Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 232(2): e13650, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33749990

RESUMO

AIMS: Recent reports suggest that iron deficiency impacts both intestinal calcium and phosphate absorption, although the exact transport pathways and intestinal segment responsible have not been determined. Therefore, we aimed to systematically investigate the impact of iron deficiency on the cellular mechanisms of transcellular and paracellular calcium and phosphate transport in different regions of the rat small intestine. METHODS: Adult, male Sprague-Dawley rats were maintained on a control or iron-deficient diet for 2 weeks and changes in intestinal calcium and phosphate uptake were determined using the in situ intestinal loop technique. The circulating levels of the hormonal regulators of calcium and phosphate were determined by ELISA, while the expression of transcellular calcium and phosphate transporters, and intestinal claudins were determined using qPCR and western blotting. RESULTS: Diet-induced iron deficiency significantly increased calcium absorption in the duodenum but had no impact in the jejunum and ileum. In contrast, phosphate absorption was significantly inhibited in the duodenum and to a lesser extent the jejunum, but remained unchanged in the ileum. The changes in duodenal calcium and phosphate absorption in the iron-deficient animals were associated with increased claudin 2 and 3 mRNA and protein levels, while levels of parathyroid hormone, fibroblast growth factor-23 and 1,25-dihydroxy vitamin D3 were unchanged. CONCLUSION: We propose that iron deficiency alters calcium and phosphate transport in the duodenum. This occurs via changes to the paracellular pathway, whereby upregulation of claudin 2 increases calcium absorption and upregulation of claudin 3 inhibits phosphate absorption.


Assuntos
Anemia Ferropriva , Cálcio , Anemia Ferropriva/metabolismo , Animais , Cálcio/metabolismo , Dieta , Duodeno/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Masculino , Fosfatos/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Nutrients ; 12(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580504

RESUMO

The breakdown of the intestinal epithelial barrier and subsequent increase in intestinal permeability can lead to systemic inflammatory diseases and multiple-organ failure. Nutrition impacts the intestinal barrier, with dietary components such as gluten increasing permeability. Artificial sweeteners are increasingly consumed by the general public in a range of foods and drinks. The sweet taste receptor (T1R3) is activated by artificial sweeteners and has been identified in the intestine to play a role in incretin release and glucose transport; however, T1R3 has not been previously linked to intestinal permeability. Here, the intestinal epithelial cell line, Caco-2, was used to study the effect of commonly-consumed artificial sweeteners, sucralose, aspartame and saccharin, on permeability. At high concentrations, aspartame and saccharin were found to induce apoptosis and cell death in intestinal epithelial cells, while at low concentrations, sucralose and aspartame increased epithelial barrier permeability and down-regulated claudin 3 at the cell surface. T1R3 knockdown was found to attenuate these effects of artificial sweeteners. Aspartame induced reactive oxygen species (ROS) production to cause permeability and claudin 3 internalization, while sweetener-induced permeability and oxidative stress was rescued by the overexpression of claudin 3. Taken together, our findings demonstrate that the artificial sweeteners sucralose, aspartame, and saccharin exert a range of negative effects on the intestinal epithelium through the sweet taste receptor T1R3.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Edulcorantes/farmacologia , Junções Íntimas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Aspartame/administração & dosagem , Células CACO-2 , Claudina-3/genética , Claudinas/genética , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Mucosa Intestinal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Sacarose/administração & dosagem , Sacarose/análogos & derivados , Edulcorantes/administração & dosagem , Junções Íntimas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...